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Sandpiles with height restrictions
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We study stochastic sandpile models with a height restriction in one and two dimensions. A site can topple
if it has a height of two, as in Manna’s model, but, in contrast to previously studied sandpiles, here the height
(or number of particles per sjtecannot exceed two. This yields a considerable simplification over the unre-
stricted case, in which the number of states per site is unbounded. Two toppling rules are considered: in one,
the particles are redistributed independently, while the other involves some cooperativity. We study the fixed-
energy systenino input or loss of particlesusing cluster approximations and extensive simulations, and find
that it exhibits a continuous phase transition to an absorbing state at a criticallvaltighe particle density.

The critical exponents agree with those of the unrestricted Manna sandpile.
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I. INTRODUCTION II. MODELS

The models are defined on a hypercubic lattice with peri-

Sandpile models are the prime example of self-organize(adic boundaries: a ring df sites in one dimension, a square

criticality .(SOQ [1,2], a control mechanism 'that fqrceg 2 |attice of L X L sites in 2D. The configuration is specified by
system with an absorbing-state phase transition to its criticah o umber of particles = 0,1, or 2 at each site sites with
point [3-5], leading to scale invariance in the apparent ab-, T

. . .~ z;=2 areactive and have a toppling rate of unity. The con-
sence of gartametel[bﬁ]. ﬁOC 'tn ta slhowly tdnvep sa_ndp|le dtinuous time(i.e., sequentia) Markovian dynamics consists
corresponds to an absorbing-staté phase transition Ina MoGgy 5 arjeg of toppling events at individual sité@daintaining
having the same local dynamics, but a fixed number of par:

. the restiction z=2 would be quite complicated in a
ticles [3,7-10. The latter class of models have come to be d P

. . . . simultaneous-update schem®/hen sitei topples, two par-
called fixed-energy sandpildFES. While most studies of ;
sandpiles have probed the driven cidd), there is great ticles attempt to move to randomly chosen nearest neighbors

interest in understanding the scaling properties of FES moc)t—randJ of i. (j andj’ need not be distingtEach particle

. ; ansfer is accepted so long as it does not lead to a site
eI; as Well[9,.11—13. In this paper we study FES with a having more than two particles. The next site to topple is
height restriction.

. . . . chosen at random from a list of active sites, which must
From the theoretical standpoint, an inconvenient featur_%aturally be updated following each event. The time incre-

of sandpile models is that the number of particles per site i : . A
unbounded. This complicates attempts to derive cluster a?pent associated with each topplingas=1/N, , whereN,

e . - ) Is the number of active sites just prior to the eveiit.is the
proximations and continuum descriptions. In Manna’s StO- 1 ean waiting time to the next event. if we were to choose
chastic sandpil§¢15,16], a site withz=2 particles is active, 9 '

. ; ) . . . sites blindly, instead of using a list. In this wal,, sites
i.e., can topple, sending two particles to neighboring sites - . . . . .

. o . __~“fopple per unit time, consistent with each active site having a
This suggests restricting the number of particles per site to

B ) : unit rate of toppling.
i/;oodirlng:];.ol: s{tzhlljs) V\\;\%ﬁ mi Stgglyo?g;?a?)lgﬁg}ellig grriltiecglnd We consider two stochastic toppling rules. In one, the two
' 9 9 particles released when a site topples move independently.

properties. Analyses of FES without a height restriction re—Any particle attempting to move to a site harboring two par-

yeal that they ?Xhibit a phase trangition betyvegn an absorlfi'cles is sent back to the toppling sitéfhus an attempt to

ing and an active state as the particle dengitg increased send two particles from siteto sitek, with z,= 1, results in

beyond a critical valu€3,17,18; we find the same to be true 7 =2 andz = 1.) We study thisnde 'enden:o I'in rule in
2 ji= L. y p ppling

of the restricted-height models. Thus the restricted model haboth one and two dimensions. In the othespperativerule

nontrivial critical behavior, and represents, due to its simplic-, o .
; . : .~ transitions that would transfer fewer than the maximum pos-
ity, an attractive system for further theoretical analysis.

Moreover, a detailed study allows us to address questions c%;ble number of particles are avoided. The cooperative rule is

. 0 . .~ Studied in one dimension only. Transition probabilities for
universality in sandpiles, and, more generally, of absorbing:

. . . the two rules are listed in Table I. A semiparallel version of a
state phase transitions in systems with a conserved densi . ; . ; . S
. . X o-dimensional restricted-height sandpile was studied in
[19]. The balance of this paper is organized as follows. In

Sec. Il we define the models, followed by a discussion OfRef. [19], where it is called the conserved threshold transfer
cluster approximations in Sec. Ill. Numerical results are anaprocess:{CTTP).

lyzed in Sec. IV, and in Sec. V we summarize our findings. Il CLUSTER APPROXIMATIONS

We have derived cluster approximations for the indepen-
*Email address: dickman@fisica.ufmg.br dent toppling rule at the one-sité.e., simple mean-field
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TABLE I. Transition probabilities for the independent and co- —(i)(j) and (jk)—(i)(j)(k).
operative toppling rules in one dimension. The transition probabili- To illustrate how transition rates are evaluated we con-
ties are symmetric under reflection. sider some examples. The transitionsQ requires the initial
configuration[o][2], i.e., an empty site with an active neigh-

Transition Probability ) bor. Exactly one of the two particles must jump to the empty
Independent Cooperative site; in d dimensions this occurs with probability @2
020—101 1/2 1/2 —1)/2d2. Thus the rate of transitions-01 is
—200 1/4 1/4 od—1 od—1
o e L4 245 (0)(2)= ==(0)(2)
120—-201 1/2 1/2 2d2 d ’
—102 1/4 1/2
—,210 1/4 0 where the factor @ represents the number of nearest neigh-
220—202 1/4 1 bors.
—211 1/2 0 Consider now the transition-21. There are two mutu-
—220 1/4 0 ally exclusive paths by which it can be realized. In one, both
121202 1/2 1 particl_es jump tp the same neighbohe pr_obability f_or this
112 1/4 0 event is 1/412).; if thg neighbor bears a single .partlcle, then
211 1/4 0 only one particle will be transferred, as required. Thus the
122,212 3/4 1 initial configuration must be][1] and the rate for this path is
122 1/4 0 (2)(1)/A. In the other path, the particles jump to distinct

sites (the probability for this is 1/@%), one of which must
already have two particles, while the other must have fewer
than two. The required initial configuration is therefore

theory) and two-site levels. While the height restriction com- . : .
plicates the analysis of transitions, it confers the advantag‘ where /2denotes a site witlz<2. The rate for this

. 71 2 .
of a strict limit on the the number of variableédo study the Path is (2-d~")(2)°(2). Evaluating the rates for the re-
unrestricted sandpile using cluster approximations one mudp@ining transitions we obtain the equations of motion,

impose a cutoff on the height distributi¢8].) d 2d—1
—(0)= — = 2_
510 =4 (2L2*-20)], (D)
A. One-site approximation
At this level of approximation there are three varialjpgs i _ 2d—-1 .
with n=0,1 or 2, representing the probability of a site hav- dt(l) d @LO+2)(@)= (D], @

ing exactlyn particles. It is convenient to use the shorthand
notation p,=(n). There is only one independent variable, and
due to the constraints of normalization, (0(1)+(2)=1, q 2d—1

We begin the analysis by enumerating, in Fig. 1, the pos- dt 2d
sible transitions between states of a single site. Each transi- o ) )
tion requires a specific local configuratidaf two or three ~ After eliminating the variable€0) and (1), a simple calcula-
sites, depending on the procgsand a particular redistribu- tion shows that the stationary density of active sites is
tion of the two particles liberated when the active site
topples. The local configuration and the choice of redistribu- (2)=2-+5-2¢, 4)
tion are independent events. In the one-site approximationall , . . . _
joint probabilities for two or more sites are factorized;)( which implies{;=1/2 regardless of.

1 B. Two-site approximation

2 The dynamical variables are now the nearest-neighbor
TO: (NN) joint probabilities {j) with i,j=0, 1, or 2. There are

0 four independent variables, due to the symmetiy € (ji)
(for i#]j) and the two relations noted previously. The al-
1 lowed transitions between configurations of a NN pair of
sites are shown in Fig. 2.

Consider, for example, the transition-8M@1. The initial
configuration must b&d [2]; its probability, in the two-site
approximation, ig00)(02)/(0), where(02)/(0) represents the
conditional probability for a NN pair in state 02, given one

FIG. 1. Transitions between states of a single site” tlenotes  Site in state 0. To realize the transition, exactly one particle
a forbidden transition; diagonal entries are irrelevant. must be transferred from the toppling site to its neighbor in

FROM: O
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FROM: (22)<(2)?. This is expected on physical grounds, since, to
ol o1 Lozl 41 | 12 22 become active, a site must have a NN that has toppled re-
cently.
00
01 C. Cooperative rule
10: | 02 For the cooperative rule, the evolution equations for the
' probabilities(0), (1), and (2) are
1
12 1
o5 &(0)——5(020)+(121), (5)
FIG. 2. Transitions between configurations of a NN pair of sites;
“ X" denotes a forbidden transition; diagonal entries are irrelevant. %(1):(020) —2(121), (6)
the 00 pair; this occurs with probability 2- 1)/2d2, as be-
fore. The rate for this process is then given by and
_1)2 d 1
(2d—1)° (00)(02) 5t (2)=—5(020+(12D. 7)
2d? 0) -

To obtain the one-site approximation we factorize all joint
where the additional factor of®-1 represents the number probabilities. There is then only one independent equation,
of possible locations for the neighbor in statg/®ote that in  for example,
the lossterm for (00) this rate is multiplied by 2 to account
for the mirror-symmetric procegsProceeding in this manner
we obtain the rates for each of the 17 allowed transitions. E __ [} 2 2}

_ ; (2)==(2)|5(0)*+(1)?]. ®
These are used to generate the equations of motion for the dt 2
pair probabilities, which are then integrated using a fourth- ) o o
order Runge-Kutta scheme. In the stationary state this gives (8)/2(1) from which it

We find £,=0.75 in 1D (just as for the unrestricted follows that

mode), and{.=0.63 in 2D.(The corresponding simulation
values are 0.92965 and 0.711 27, respectively, as discussed 3+.2
in the following section. The cluster approximation predic- (2)= T[g—(\/f— 1]. (9)
tions for the active-site density are compared with simulation
rgsults in F_ig. 3.. An interesting qu_alitative. result of the two- The critical density is thed,= y2—1~0.414 21
site approximation is that active sites anaticorrelated i.e., The smaller value of, here, as compared with the inde-

pendent rule, reflects the fact the cooperative rule tends to
maximize the number of active sites generated. We show
below that the critical density. of the independent model is

in fact slightly lower than that of the cooperative one. The
reason for this is not immediately apparent from the transi-
tion rates, but would appear to lie in subtle correlations in-
duced by the dynamics, that are not evident at the one-site
level.

03 7

0.2

0.1 I IV. SIMULATION RESULTS

A. Independent rule

We performed extensive simulations of the height-
L restricted FES with independent toppling rule in one and two
0.0 dimensions. The initial condition is generated by distributing
05 06 07 08 09 1.0 (LY particles randomly among the® sites, avoiding occu-
¢ pancy of any site by more than two particles. This yields an
initial distribution that is spatially homogeneous, and uncor-
FIG. 3. The stationary active-site density in the two-dimensionalrélated. The dynamics begins once all the particles have been
restricted-height sandpile as predicted by the one-site and two-sitelaced on the lattice. The particle number is, of course, con-
approximations, compared with the simulation result. served by the dynamics.
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. FIG'. 4. Evolut?on (.Jf the_ active-:_sitg_density in the one- FIG. 6. Stationary moment ratim({) in the one-dimensional
dimensional sandpile with height restrictigimdependent rule L model (independent rule Squares,L=500; +, L=2000

=1000; ¢=0.93. Curves are cubic fits to the data.

In one dimension we study system sizes ranging flom | 3 fixed-energy sandpile of linear extdntwe can only
=100 to 5000 sites; in two dimensions the system compriségary / in increments of 1/%. To circumvent this limitation,
L XL sites withL =10,20,40. . .,320. For eacl we study @  \york we adopt a strategy employed in a recent study of the
range of particle densities= N/Lé- The simulations consist pair contact procesf20]. Given simulation results for the
of Ng independent runs, extending to a maximum tithe  stationary values of, andm, and of the survival timer, for
(In one dimension, for example, we uséd=10°, ty 4 certain system size, we form least-squares cubic fits to
=4000 for L=100, and Ng=2000, tn=2X1C° for L  these data, permitting interpolation to arbitratyvalues
=5000. In two dimensions these parameters varied fromyithin the interval studied. Thus, for eath we regardp,,
Ng=10°, t,=1000 forL=10, toNs=2x10" andt,=8 m andr as a functions of @ontinuousvariableZ. (Since the
X 10" for L=320) properties of a finite system are nonsingular, the interpolation
Our first task is to locate the critical denSigy; to this procedure seems quite natu)'a])_ata sets fom, and associ-
end we study the active-site density(t), its second mo- ated cubic fits, are shown in Fig. 6.
ment pﬁ(t), and the survival probabilitp(t). The second A well known criterion for criticality is size independence

moment is used to evaluate the rani;()t)zpa(t)/pg(t)_ Fig-  of order-parameter moment ratios, typically in the form of
ures 4 and 5 show typical results fog(t) andP(t), respec-  “crossings” of Binder's reduced fourth cumulan21].
tively. pa(t) relaxes to a well-defined stationary value, Moment-ratio crossings have also proven useful for fixing
p.(,L), (similarly for m), while the exponential decay of of the critical parameter value at absorbing-state phase transi-
P(t) allows one to extract an associated lifetimgz,L).  tions [20,22,23. We determine the valug,(L,L") for

The stationary valuesi,(Z,L) andm(¢,L) are obtained by Whichm(Z,L)=m({,L"), for successivé. values. Extrapo-
discarding the initial, transient portion of the data, and perlating these data th — yields our estimate fof.; Fig. 7
forming averages over the remainder, weighted mt),

which measures the effective sample size. 0.9300 T
0.0 0.9295 [ -
0.9290 | .
- ]
o ]
c 031 0.9285 | .
0.9280 | .
-06 : : : : . : : 0.9275 . : : : . . .
0 60000 120000 0.000 0.004 0.008
t 1L
FIG. 5. Evolution of the survival probabiliti(t), for the same FIG. 7. Moment-ratio crossing valu€s, vs reciprocal system
parameters as in Fig. 4. size in 1D(independent rule
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TABLE IlI. Critical parameters of restricted and unrestricted
sandpiles. Figures in parentheses denote uncertainties. Results for
the unrestricted models are from Ref48] (1D) and [17] (2D);
result for the CTTP from Ref.19].

Model le Blv, v lv, B
Independent 1D 0.9296% 0.2472) 1.453) 0.4134)
Cooperative 1D 0.9788) 0.2455) 1.545) 0.4171)
Unrestricted 1D 0.94883) 0.23911) 1.667) 0.422)
Independent 2D 0.71127&) 0.7743) 1.5727) 0.6565)
CTTP 2D 0.783) 1.555) 0.641)
Unrestricted 2D  0.71695) 0.782) 1.574) 0.641)

same conclusion fot. From the data for the four largest
systems, we then obtaifvia least-squares linear fitsthe
exponent ratiog/v, andy /v, listed in Table II.(The un-
certainties reflect two contributions: one due to the uncer-
tainty of the fit, the other, dominant one, due to the uncer-
tainties in the values op, and = for eachL. The latter
includes the effects of uncertainty ifa .)

To determine the exponegtwe analyze the results far,

iIIustrat(,as the procedure. Evidently the crossing valuesy the portion of the supercritical regime where the graph of
{er(L,L7) converge quite rapidly. In two dimensions, the |y, ys InA follows a power law. In two dimensions this

crossings are well described by the forég,(L,L')=¢;
+aL P wherea is an amplitude anth=2.72.

Analysis of the moment-ratio crossings Yyields.
=0.92965(3) in 1D and.=0.711270(3) in 2D, where the

procedure yields3=0.6613), 0.6612), 0.6543), and
0.655(2) forL=20, 40, 80, and 160, respectively, leading to
an estimate of3=0.6565). Figure 9, a scaling plot of
LA.pa(Z,L) vs LY"LA for various system sizes, shows a

figures in parentheses denote uncertainties. For comparisogood data collapse, verifying the finite-size scalifgs9

we note the values for thenrestrictedversion of the model:
0.9488%7) in 1D, 0.716 9%5) in 2D. Thus the height restric-
tion yields a rather small shift id., by about 2% in one

hypothesis for the order parameter, and yielding=0.85.
In one dimension it turns out that no power laws are seen
if we usel.=0.929 65 as determined from the FSS analysis

dimension, and 0.8% in 2D. This is reasonable since, in thﬁescribed above. Quite clean power-law dependeneg &

unrestricted modelnear its critical point only a small frac-
tion of the sites have>2. The critical values of the moment
ratio arem.=1.1596(4) in 1D, and 1.342) in 2D. While

observed, however, if we use dndependeneffectivecriti-
cal point{. in the analysis. We determing by optimiz-
ing the linearity of Inp, as a function of I\, and maximiz-

these differ significantly from the corresponding values for

the directed percolatiofDP) universailty clasq1.173%5)
and 1.325%) in 1D and 2D, respectivelj22]], the moment
ratios for the two classes are very similar.

In studies of absorbing-state phase transitip?4], in-
cluding fixed-energy sandpilé8,18], it is common to deter-

mine the critical point by seeking a power-law dependence

of the order parameterp( in the present instantand the
relaxation time on the system sikeThe former is governed

by

pa(4,L)=L"AR(LYA), (10)
as expected on the basis of finite-size scalidg]. (Here A
=(!—{., andR is a scaling function.Thus at the critical
point (A=0) we expecip,({s,L)~L#1; for the lifetime

one hasr({,,L)~L"I"L,
With {; in hand, we may verify the power-law depen-

0.5 L L T LI — 1 v T T T °F

0.0 - 1

In

LN

o
T

In A*

dence of the order parameter and the lifetime on system size,

as in Eq.(10), by interpolating the simulation data to the
critical value{. . Figure 8 shows thai, indeed has a power-
law dependence oh; a similar plot(not shown yields the

FIG. 9. Scaling plot of the stationary active-site density in 2D
(independent rule System sized =20 (filled squares 40 (open
squarey 80 (X), and 160 ¢ ).
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TABLE lIl. Effective size-dependent critical density and appar-  0.16
ent exponenp, , andL— o extrapolated values, for the 1D model
with independent toppling rule.

L Lo BL
500 0.92561) 0.4653)
1000 0.92781) 0.4414) 0 oos |
2000 0.928165) 0.4314)
5000 0.9284%5) 0.4234)
% 0.92984) 0.4124)

ing the number of data points that may reasonably be fit by
the power law(For L=1000 for example, we are able to fit ) T ‘ ‘
15 points with a correlation coefficient of 0.999 P&he re- 0.7 0.975 °£8 0.985 0.98

sulting values off, | andg are listed in Table Ill. Extrapo-
lating the effective critical densities to infinite (via linear FIG. 11. Stationary active-site density in 1D vs particle density,

regression versuk ~ Y1) yields {.=0.92984), consistent  for various system size&ooperative rulg
with our our estimate based on moment-ratio crossings. A

similar extrapolation givess=0.412(4) We determine the mal effect on critical properties. Figure 11 shows the station-

exponentr, via a data-collapse analysis, as in the 2D case . . . . . .
(see Fig. 10 We obtain a good data collapse fow1/in the ary active-site density as a function of the particle density for

range 0.60 to 0.62, leading to the estimate=1.644). several_values ol . - .
g ¢ i 44) We first analyzed the stationary critical properties of the

model by means of the finite-size scaling relation, Bd)).
The critical density was obtained by plotting, vs L for

We performed extensive simulations of the cooperativeseveral? values, as shown in Fig. 12As before, values of
model in one dimension with system sizes again ranging,, for densities between those accessible for a givevere
from L =100 toL =5000. In this case we prevented the sys-obtained via interpolatiohUsing the criterion of power-law
tem from falling into an absorbing configuration by main- dependence of the order parameter on system size, we find
taining at least two active sitef there are only two active  » —0.9788(1) angs/v, =0.2455). As analternative deter-

sites, transitions that decrease the number of active sites afgination of {. we used moment-ratio crossings. Figure 13
not permitted. Actually, there is only one transition of this g, 4\vs the moment ratim as a function of¢ for L=2000

sort, 020~ 101) The density of active sites is then always andL=5000. The two curves cross &t=0.9788, confirm-
=2/L. But since the stationary value @f, at the critical ing the previ.ous result ' '

intis~L A" wi ~ i ini-
point is ~L =%, with /v, =1/4, this should have a mini Having obtained the critical particle density, we used it to
find the critical exponenB governing the order parameter.

B. Cooperative rule

2T ] Figure 14 is a log-log plot op, vs {— . for several values
A of L. The slope of the straight line fitted to the data points for
x+ ]
11 :PE?‘ - -3 . .
3 ] [}\5\9\9
]
L3 "
Q.
c o} dlﬂFF _ -35
- )
B
,fﬂ
o8 Inp
“1r o T —o0.
[ xEKﬂ‘t‘ﬂ’ 1 B—Eg.g;gg
Lx ®& G, { —©0.9787
% . J A—A0.9788
—45 <4—=<10.9789
¥—v0.9790
-2"""""""""' >—+>0.9792
-4 -2 0 2 4
»
In A ®s 7 InL 8 9
FIG. 10. Scaling plot of the stationary active-site density in 1D
(independent rule System sized =500 (O), 1000 (¢), 2000 FIG. 12. Stationary active-site density versus system size in 1D
(%), and 5000 (). (cooperative rulg
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o——o 100
=—=a 200
—= 500

1}

|np 2
4 -
-4 1 L L 4 \ \
0.978 0.9785 0.979 0.9795 0.98 _8 8 4 _ 0
In(C-C.)
FIG. 1_3. Stationary moment ratio in the one-dimensional model  FIG. 14. Stationary active-site density §s- £, for various sys-
(cooperative rulg tem sizes(cooperative rule, 1D

L=5000 givesB=0.4111). From this, and our previous

result for /v, , we obtainy, =1.704). Jot yield very accurate predictions for the critical denség

We also performed time-dependent simulations at th . .
critical density, to measure the growth of the number of acis to be expected but they correctly predict the continuous

tive sites. Here, each trial began with just one active site. Fopature of the transition. N

a given particle density, this was realized by placing a As shown in Table I, the critical exponents for thg
particle at each ofL—1 distinct sites, chosen at random. Present models appear to be the same as for the unrestricted
One of these sites was then selected randomly, and anoth@®se- In fact, there is excellent agreement between the expo-
particle placed there, rendering it active. In a lattice of sizehent values for the restricted and unrestricted models, except
L=10000, we performed from 5000 to 6000 trials of this for the exponenz=y /v, in one dimension. As was noted
kind, to determine the mean number of particleg), aver-  in Ref. [18], however, obtaining a reliable estimate for the
aged over all trialgincluding those that fall into an absorb- €Xponentz from simulations is quite difficult in one dimen-

ing configuration prior to time). At the critical point, and  SION. (In two dimensions the estimates fpare in gxcgllent

for a sufficient large systerm(t) is expected to increase agreement. It appears that the relaxation dynamics is anoma-

asymptotically as a power law lous in one dimension, as suggested in R&8].)
Very recently, Mohanty and Dhar have shown that sand-

pile models with “sticky” grains fall generically in the di-

n(t)~t7, (1) rected percolation universality clagg7]. In these models a
site harboring more than the threshold number of particles

where the exponent is related to the exponent=v /v, by  (two, in the models studied heérehas a nonzero probability

the scaling relatior11,26 to remainstable rather than toppling. Models without this
property are not expected to belong to the DP class. Thus,
studies of a reaction model suggest a common universality
(12)  class, distinct from that of DP, for absorbing-state phase tran-
sitions in which the order parameter is coupled to a second

field that relaxes diffusively in the presence of actiityd].

in d dimensions. Our data far(t) at {:=0.9788 do in fact Manna’s stochastic sandpile falls in this category, with the

ticle density.. One- and two-site cluster approximations do

1
Z:_
n

a-22

v,

follow a power law, and yield the estimatg=0.330Q5). |ocal particle density/(x,t) playing the role of the second
Using our previous result for3/v, we then obtainz  field. Our results show that height restrictions and perturba-
=1.545). tions of the toppling rule do not alter the critical exponents,
if they preserve the above-mentioned features, supporting
V. DISCUSSION universality in critical behavior far from equilibrium.

We studied the scaling behavior of fixed-energy sandpiles
that follow a stochastic dynamics similar to that of the
Manna model, but with a height restrictian<2. Both ver-
sions of the modeli.e., the independent and cooperative = We thank Sven Lbeck, Alessandro Vespignani, and Paulo
toppling ruleg, exhibit a continuous phase transition be- Alfredo Gonalves Penido for helpful comments. This work
tween an absorbing state and an active one at a critical pawas supported by CNPqg and CAPES, Brazil.
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