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Sandpiles with height restrictions
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We study stochastic sandpile models with a height restriction in one and two dimensions. A site can topple
if it has a height of two, as in Manna’s model, but, in contrast to previously studied sandpiles, here the height
~or number of particles per site!, cannot exceed two. This yields a considerable simplification over the unre-
stricted case, in which the number of states per site is unbounded. Two toppling rules are considered: in one,
the particles are redistributed independently, while the other involves some cooperativity. We study the fixed-
energy system~no input or loss of particles! using cluster approximations and extensive simulations, and find
that it exhibits a continuous phase transition to an absorbing state at a critical valuezc of the particle density.
The critical exponents agree with those of the unrestricted Manna sandpile.
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I. INTRODUCTION

Sandpile models are the prime example of self-organi
criticality ~SOC! @1,2#, a control mechanism that forces
system with an absorbing-state phase transition to its crit
point @3–5#, leading to scale invariance in the apparent a
sence of parameters@6#. SOC in a slowly driven sandpile
corresponds to an absorbing-state phase transition in a m
having the same local dynamics, but a fixed number of p
ticles @3,7–10#. The latter class of models have come to
called fixed-energy sandpiles~FES!. While most studies of
sandpiles have probed the driven case@2,14#, there is great
interest in understanding the scaling properties of FES m
els as well@9,11–13#. In this paper we study FES with
height restriction.

From the theoretical standpoint, an inconvenient feat
of sandpile models is that the number of particles per sit
unbounded. This complicates attempts to derive cluster
proximations and continuum descriptions. In Manna’s s
chastic sandpile@15,16#, a site withz>2 particles is active,
i.e., can topple, sending two particles to neighboring si
This suggests restricting the number of particles per site
z50, 1 or 2. In this work we study such a model, in one a
two dimensions~2D!, with the goal of establishing its critica
properties. Analyses of FES without a height restriction
veal that they exhibit a phase transition between an abs
ing and an active state as the particle densityz is increased
beyond a critical value@3,17,18#; we find the same to be tru
of the restricted-height models. Thus the restricted model
nontrivial critical behavior, and represents, due to its simp
ity, an attractive system for further theoretical analys
Moreover, a detailed study allows us to address question
universality in sandpiles, and, more generally, of absorbi
state phase transitions in systems with a conserved de
@19#. The balance of this paper is organized as follows.
Sec. II we define the models, followed by a discussion
cluster approximations in Sec. III. Numerical results are a
lyzed in Sec. IV, and in Sec. V we summarize our finding

*Email address: dickman@fisica.ufmg.br
1063-651X/2002/66~1!/016111~8!/$20.00 66 0161
d

al
-

del
r-

d-

e
is
p-
-

s.
to
d

-
b-

as
-
.
of
-
ity
n
f
-

.

II. MODELS

The models are defined on a hypercubic lattice with pe
odic boundaries: a ring ofL sites in one dimension, a squa
lattice ofL3L sites in 2D. The configuration is specified b
the number of particleszi50,1, or 2 at each sitei; sites with
zi52 areactive, and have a toppling rate of unity. The co
tinuous time~i.e., sequential!, Markovian dynamics consist
of a series of toppling events at individual sites.~Maintaining
the restiction z<2 would be quite complicated in a
simultaneous-update scheme.! When sitei topples, two par-
ticles attempt to move to randomly chosen nearest neigh
j and j 8 of i. ( j and j 8 need not be distinct.! Each particle
transfer is accepted so long as it does not lead to a
having more than two particles. The next site to topple
chosen at random from a list of active sites, which m
naturally be updated following each event. The time inc
ment associated with each toppling isDt51/NA , whereNA
is the number of active sites just prior to the event.Dt is the
mean waiting time to the next event, if we were to choo
sites blindly, instead of using a list. In this way,NA sites
topple per unit time, consistent with each active site havin
unit rate of toppling.

We consider two stochastic toppling rules. In one, the t
particles released when a site topples move independe
Any particle attempting to move to a site harboring two p
ticles is sent back to the toppling site.~Thus an attempt to
send two particles from sitej to sitek, with zk51, results in
zk52 andzj51.! We study thisindependenttoppling rule in
both one and two dimensions. In the other,cooperativerule,
transitions that would transfer fewer than the maximum p
sible number of particles are avoided. The cooperative rul
studied in one dimension only. Transition probabilities f
the two rules are listed in Table I. A semiparallel version o
two-dimensional restricted-height sandpile was studied
Ref. @19#, where it is called the conserved threshold trans
processs~CTTP!.

III. CLUSTER APPROXIMATIONS

We have derived cluster approximations for the indep
dent toppling rule at the one-site~i.e., simple mean-field
©2002 The American Physical Society11-1
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theory! and two-site levels. While the height restriction com
plicates the analysis of transitions, it confers the advant
of a strict limit on the the number of variables.~To study the
unrestricted sandpile using cluster approximations one m
impose a cutoff on the height distribution@3#.!

A. One-site approximation

At this level of approximation there are three variablespn
with n50,1 or 2, representing the probability of a site ha
ing exactlyn particles. It is convenient to use the shortha
notation pn[(n). There is only one independent variab
due to the constraints of normalization, (0)1(1)1(2)51,
and of fixed density,z5(1)12(2).

We begin the analysis by enumerating, in Fig. 1, the p
sible transitions between states of a single site. Each tra
tion requires a specific local configuration~of two or three
sites, depending on the process!, and a particular redistribu
tion of the two particles liberated when the active s
topples. The local configuration and the choice of redistri
tion are independent events. In the one-site approximatio
joint probabilities for two or more sites are factorized: (i j )

TABLE I. Transition probabilities for the independent and c
operative toppling rules in one dimension. The transition probab
ties are symmetric under reflection.

Transition Probability
Independent Cooperative

020→101 1/2 1/2
→200 1/4 1/4
→002 1/4 1/4

120→201 1/2 1/2
→102 1/4 1/2
→210 1/4 0

220→202 1/4 1
→211 1/2 0
→220 1/4 0

121→202 1/2 1
→112 1/4 0
→211 1/4 0

122→212 3/4 1
→122 1/4 0

FIG. 1. Transitions between states of a single site. ‘‘3 ’’ denotes
a forbidden transition; diagonal entries are irrelevant.
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→(i)(j) and (i jk )→( i )( j )(k).
To illustrate how transition rates are evaluated we c

sider some examples. The transition 0→1 requires the initial
configuration 0 2 , i.e., an empty site with an active neigh
bor. Exactly one of the two particles must jump to the emp
site; in d dimensions this occurs with probability (2d
21)/2d2. Thus the rate of transitions 0→1 is

2d
2d21

2d2
~0!~2!5

2d21

d
~0!~2!,

where the factor 2d represents the number of nearest neig
bors.

Consider now the transition 2→1. There are two mutu-
ally exclusive paths by which it can be realized. In one, b
particles jump to the same neighbor~the probability for this
event is 1/4d2); if the neighbor bears a single particle, the
only one particle will be transferred, as required. Thus
initial configuration must be2 1 and the rate for this path is
(2)(1)/2d. In the other path, the particles jump to distin
sites ~the probability for this is 1/2d2), one of which must
already have two particles, while the other must have few
than two. The required initial configuration is therefo
2 2 2” , where 2” denotes a site withz,2. The rate for this
path is (22d21)(2)2(2”). Evaluating the rates for the re
maining transitions we obtain the equations of motion,

d

dt
~0!5

2d21

2d
~2!@~2”!222~0!#, ~1!

d

dt
~1!5

2d21

d
~2!@~0!1~2!~2”!2~1!#, ~2!

and

d

dt
~2!5

2d21

2d
~2!@2~1!2~2”!222~2!~2”!#. ~3!

After eliminating the variables~0! and~1!, a simple calcula-
tion shows that the stationary density of active sites is

~2!522A522z, ~4!

which implieszc51/2 regardless ofd.

B. Two-site approximation

The dynamical variables are now the nearest-neigh
~NN! joint probabilities (i j ) with i , j 50, 1, or 2. There are
four independent variables, due to the symmetry (i j )5( j i )
~for i 5” j ) and the two relations noted previously. The a
lowed transitions between configurations of a NN pair
sites are shown in Fig. 2.

Consider, for example, the transition 00→01. The initial
configuration must be00 2 ; its probability, in the two-site
approximation, is~00!~02!/~0!, where~02!/~0! represents the
conditional probability for a NN pair in state 02, given on
site in state 0. To realize the transition, exactly one part
must be transferred from the toppling site to its neighbor

i-
1-2
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SANDPILES WITH HEIGHT RESTRICTIONS PHYSICAL REVIEW E66, 016111 ~2002!
the 00 pair; this occurs with probability (2d21)/2d2, as be-
fore. The rate for this process is then given by

~2d21!2

2d2

~00!~02!

~0!
,

where the additional factor of 2d21 represents the numbe
of possible locations for the neighbor in state 2.~Note that in
the loss term for ~00! this rate is multiplied by 2 to accoun
for the mirror-symmetric process.! Proceeding in this manne
we obtain the rates for each of the 17 allowed transitio
These are used to generate the equations of motion for
pair probabilities, which are then integrated using a four
order Runge-Kutta scheme.

We find zc50.75 in 1D ~just as for the unrestricted
model!, andzc50.63 in 2D.~The corresponding simulatio
values are 0.929 65 and 0.711 27, respectively, as discu
in the following section.! The cluster approximation predic
tions for the active-site density are compared with simulat
results in Fig. 3. An interesting qualitative result of the tw
site approximation is that active sites areanticorrelated, i.e.,

FIG. 2. Transitions between configurations of a NN pair of sit
‘‘ 3 ’’ denotes a forbidden transition; diagonal entries are irreleva

FIG. 3. The stationary active-site density in the two-dimensio
restricted-height sandpile as predicted by the one-site and two
approximations, compared with the simulation result.
01611
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(22),(2)2. This is expected on physical grounds, since,
become active, a site must have a NN that has toppled
cently.

C. Cooperative rule

For the cooperative rule, the evolution equations for
probabilities(0), (1), and (2) are

d

dt
~0!52

1

2
~020!1~121!, ~5!

d

dt
~1!5~020!22~121!, ~6!

and

d

dt
~2!52

1

2
~020!1~121!. ~7!

To obtain the one-site approximation we factorize all jo
probabilities. There is then only one independent equat
for example,

d

dt
~2!52~2!F1

2
~0!21~1!2G . ~8!

In the stationary state this gives (0)5A2(1) from which it
follows that

~2!5
31A2

7
@z2~A221!#. ~9!

The critical density is thenzc5A221.0.414 21.
The smaller value ofzc here, as compared with the inde

pendent rule, reflects the fact the cooperative rule tend
maximize the number of active sites generated. We sh
below that the critical densityzc of the independent model i
in fact slightly lower than that of the cooperative one. Th
reason for this is not immediately apparent from the tran
tion rates, but would appear to lie in subtle correlations
duced by the dynamics, that are not evident at the one-
level.

IV. SIMULATION RESULTS

A. Independent rule

We performed extensive simulations of the heig
restricted FES with independent toppling rule in one and t
dimensions. The initial condition is generated by distributi
zLd particles randomly among theLd sites, avoiding occu-
pancy of any site by more than two particles. This yields
initial distribution that is spatially homogeneous, and unc
related. The dynamics begins once all the particles have b
placed on the lattice. The particle number is, of course, c
served by the dynamics.

;
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l
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In one dimension we study system sizes ranging fromL
5100 to 5000 sites; in two dimensions the system compr
L3L sites withL510,20,40, . . . ,320. For eachL we study a
range of particle densitiesz[N/Ld. The simulations consis
of Ns independent runs, extending to a maximum timetm .
~In one dimension, for example, we usedNs5105, tm
54000 for L5100, and Ns52000, tm523106 for L
55000. In two dimensions these parameters varied fr
Ns5105, tm51000 for L510, to Ns523104 and tm58
3104 for L5320.!

Our first task is to locate the critical densityzc ; to this
end we study the active-site densityra(t), its second mo-
ment ra

2(t), and the survival probabilityP(t). The second
moment is used to evaluate the ratiom(t)[ra

2(t)/ra
2(t). Fig-

ures 4 and 5 show typical results forra(t) andP(t), respec-
tively. ra(t) relaxes to a well-defined stationary valu
ra(z,L), ~similarly for m), while the exponential decay of o
P(t) allows one to extract an associated lifetime,t(z,L).
The stationary values,ra(z,L) andm(z,L) are obtained by
discarding the initial, transient portion of the data, and p
forming averages over the remainder, weighted byP(t),
which measures the effective sample size.

FIG. 4. Evolution of the active-site density in the on
dimensional sandpile with height restriction~independent rule!. L
51000; z50.93.

FIG. 5. Evolution of the survival probabilityP(t), for the same
parameters as in Fig. 4.
01611
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In a fixed-energy sandpile of linear extentL, we can only
vary z in increments of 1/Ld. To circumvent this limitation,
work we adopt a strategy employed in a recent study of
pair contact process@20#. Given simulation results for the
stationary values ofra andm, and of the survival timet, for
a certain system size, we form least-squares cubic fits
these data, permitting interpolation to arbitraryz values
within the interval studied. Thus, for eachL, we regardra ,
m, andt as a functions of acontinuousvariablez. ~Since the
properties of a finite system are nonsingular, the interpola
procedure seems quite natural.! Data sets form, and associ-
ated cubic fits, are shown in Fig. 6.

A well known criterion for criticality is size independenc
of order-parameter moment ratios, typically in the form
‘‘crossings’’ of Binder’s reduced fourth cumulant@21#.
Moment-ratio crossings have also proven useful for fixi
the critical parameter value at absorbing-state phase tra
tions @20,22,23#. We determine the valuezcr(L,L8) for
which m(z,L)5m(z,L8), for successiveL values. Extrapo-
lating these data toL→` yields our estimate forzc ; Fig. 7

FIG. 6. Stationary moment ratiom(z) in the one-dimensiona
model ~independent rule!. Squares, L5500; 1, L52000.
Curves are cubic fits to the data.

FIG. 7. Moment-ratio crossing valueszcr vs reciprocal system
size in 1D~independent rule!.
1-4
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SANDPILES WITH HEIGHT RESTRICTIONS PHYSICAL REVIEW E66, 016111 ~2002!
illustrates the procedure. Evidently the crossing valu
zcr(L,L8) converge quite rapidly. In two dimensions, th
crossings are well described by the formzcr(L,L8).zc
1aL2b wherea is an amplitude andb.2.72.

Analysis of the moment-ratio crossings yieldszc
50.929 65(3) in 1D andzc50.711 270(3) in 2D, where the
figures in parentheses denote uncertainties. For compar
we note the values for theunrestrictedversion of the model:
0.948 85~7! in 1D, 0.716 95~5! in 2D. Thus the height restric
tion yields a rather small shift inzc , by about 2% in one
dimension, and 0.8% in 2D. This is reasonable since, in
unrestricted model~near its critical point!, only a small frac-
tion of the sites havez.2. The critical values of the momen
ratio aremc51.1596(4) in 1D, and 1.347~2! in 2D. While
these differ significantly from the corresponding values
the directed percolation~DP! universailty class@1.1735~5!
and 1.3257~5! in 1D and 2D, respectively@22##, the moment
ratios for the two classes are very similar.

In studies of absorbing-state phase transitions@24#, in-
cluding fixed-energy sandpiles@9,18#, it is common to deter-
mine the critical point by seeking a power-law depende
of the order parameter (ra in the present instance! and the
relaxation time on the system sizeL. The former is governed
by

ra~z,L !5L2b/n'R~L1/n'D!, ~10!

as expected on the basis of finite-size scaling@25#. ~HereD
[z2zc , andR is a scaling function.! Thus at the critical
point (D50) we expectra(zc ,L);L2b/n'; for the lifetime
one hast(zc ,L);Ln uu /n'.

With zc in hand, we may verify the power-law depe
dence of the order parameter and the lifetime on system s
as in Eq.~10!, by interpolating the simulation data to th
critical valuezc . Figure 8 shows thatra indeed has a power
law dependence onL; a similar plot~not shown! yields the

FIG. 8. Stationary active-site densityra vs system sizeL at the
critical point in 1D (1) and 2D~squares! ~independent rule!.
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same conclusion fort. From the data for the four larges
systems, we then obtain~via least-squares linear fits!, the
exponent ratiosb/n' andn uu /n' listed in Table II.~The un-
certainties reflect two contributions: one due to the unc
tainty of the fit, the other, dominant one, due to the unc
tainties in the values ofra and t for each L. The latter
includes the effects of uncertainty inzc .)

To determine the exponentb we analyze the results forra
in the portion of the supercritical regime where the graph
ln r vs lnD follows a power law. In two dimensions thi
procedure yieldsb50.661(3), 0.661~2!, 0.654~3!, and
0.655(2) forL520, 40, 80, and 160, respectively, leading
an estimate ofb50.656(5). Figure 9, a scaling plot of
Lb/n'ra(z,L) vs L1/n'D for various system sizes, shows
good data collapse, verifying the finite-size scaling~FSS!
hypothesis for the order parameter, and yieldingn'50.85.

In one dimension it turns out that no power laws are se
if we usezc50.929 65 as determined from the FSS analy
described above. Quite clean power-law dependence ofra is
observed, however, if we use anL-dependenteffectivecriti-
cal pointzc,L in the analysis. We determinezc,L by optimiz-
ing the linearity of lnra as a function of lnD, and maximiz-

TABLE II. Critical parameters of restricted and unrestricte
sandpiles. Figures in parentheses denote uncertainties. Resul
the unrestricted models are from Refs.@18# ~1D! and @17# ~2D!;
result for the CTTP from Ref.@19#.

Model zc b/n' n uu /n' b

Independent 1D 0.92965~3! 0.247~2! 1.45~3! 0.412~4!

Cooperative 1D 0.9788~1! 0.245~5! 1.54~5! 0.417~1!

Unrestricted 1D 0.94885~7! 0.239~11! 1.66~7! 0.42~2!

Independent 2D 0.711270~3! 0.774~3! 1.572~7! 0.656~5!

CTTP 2D 0.78~3! 1.55~5! 0.64~1!

Unrestricted 2D 0.71695~5! 0.78~2! 1.57~4! 0.64~1!

FIG. 9. Scaling plot of the stationary active-site density in 2
~independent rule!. System sizesL520 ~filled squares!, 40 ~open
squares!, 80 (3), and 160 (1).
1-5
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DICKMAN, TOMÉ, AND de OLIVEIRA PHYSICAL REVIEW E66, 016111 ~2002!
ing the number of data points that may reasonably be fit
the power law.~For L51000 for example, we are able to fi
15 points with a correlation coefficient of 0.999 96.! The re-
sulting values ofzc,L andb are listed in Table III. Extrapo-
lating the effective critical densities to infiniteL ~via linear
regression versusL21/n') yields zc50.9298(4), consistent
with our our estimate based on moment-ratio crossings
similar extrapolation givesb50.412(4) We determine the
exponentn' via a data-collapse analysis, as in the 2D ca
~see Fig. 10!. We obtain a good data collapse for 1/n' in the
range 0.60 to 0.62, leading to the estimaten'51.64(4).

B. Cooperative rule

We performed extensive simulations of the cooperat
model in one dimension with system sizes again rang
from L5100 toL55000. In this case we prevented the sy
tem from falling into an absorbing configuration by mai
taining at least two active sites.~If there are only two active
sites, transitions that decrease the number of active sites
not permitted. Actually, there is only one transition of th
sort, 020→101.! The density of active sitesr is then always
>2/L. But since the stationary value ofra at the critical
point is ;L2b/n', with b/n'.1/4, this should have a mini

TABLE III. Effective size-dependent critical density and appa
ent exponentbL , andL→` extrapolated values, for the 1D mod
with independent toppling rule.

L zc,L bL

500 0.9256~1! 0.465~3!

1000 0.9273~1! 0.441~4!

2000 0.92815~5! 0.431~4!

5000 0.92845~5! 0.423~4!

` 0.9298~4! 0.412~4!

FIG. 10. Scaling plot of the stationary active-site density in
~independent rule!. System sizesL5500 (s), 1000 (L), 2000
(3), and 5000 (1).
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mal effect on critical properties. Figure 11 shows the stati
ary active-site density as a function of the particle density
several values ofL.

We first analyzed the stationary critical properties of t
model by means of the finite-size scaling relation, Eq.~10!.
The critical density was obtained by plottingra vs L for
severalz values, as shown in Fig. 12.~As before, values of
ra for densities between those accessible for a givenL were
obtained via interpolation.! Using the criterion of power-law
dependence of the order parameter on system size, we
zc50.9788(1) andb/n'50.245(5). As analternative deter-
mination of zc we used moment-ratio crossings. Figure
shows the moment ratiom as a function ofz for L52000
andL55000. The two curves cross atzc50.9788, confirm-
ing the previous result.

Having obtained the critical particle density, we used it
find the critical exponentb governing the order paramete
Figure 14 is a log-log plot ofra vs z2zc for several values
of L. The slope of the straight line fitted to the data points

FIG. 11. Stationary active-site density in 1D vs particle dens
for various system sizes~cooperative rule!.

FIG. 12. Stationary active-site density versus system size in
~cooperative rule!.
1-6
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SANDPILES WITH HEIGHT RESTRICTIONS PHYSICAL REVIEW E66, 016111 ~2002!
L55000 givesb50.417(1). From this, and our previous
result forb/n' , we obtainn'51.70(4).

We also performed time-dependent simulations at
critical density, to measure the growth of the number of
tive sites. Here, each trial began with just one active site.
a given particle densityz, this was realized by placing
particle at each ofzL21 distinct sites, chosen at random
One of these sites was then selected randomly, and ano
particle placed there, rendering it active. In a lattice of s
L510 000, we performed from 5000 to 6000 trials of th
kind, to determine the mean number of particles,n(t), aver-
aged over all trials~including those that fall into an absorb
ing configuration prior to timet). At the critical point, and
for a sufficient large system,n(t) is expected to increas
asymptotically as a power law

n~ t !;th, ~11!

where the exponenth is related to the exponentz5n uu /n' by
the scaling relation@11,26#

z5
1

h S d22
b

n'
D ~12!

in d dimensions. Our data forn(t) at zc50.9788 do in fact
follow a power law, and yield the estimateh50.330(5).
Using our previous result forb/n' we then obtainz
51.54(5).

V. DISCUSSION

We studied the scaling behavior of fixed-energy sandp
that follow a stochastic dynamics similar to that of t
Manna model, but with a height restrictionzi<2. Both ver-
sions of the model~i.e., the independent and cooperati
toppling rules!, exhibit a continuous phase transition b
tween an absorbing state and an active one at a critical

FIG. 13. Stationary moment ratio in the one-dimensional mo
~cooperative rule!.
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ticle densityzc . One- and two-site cluster approximations d
not yield very accurate predictions for the critical density~as
is to be expected!, but they correctly predict the continuou
nature of the transition.

As shown in Table II, the critical exponents for th
present models appear to be the same as for the unrestr
case. In fact, there is excellent agreement between the e
nent values for the restricted and unrestricted models, ex
for the exponentz5n uu /n' in one dimension. As was note
in Ref. @18#, however, obtaining a reliable estimate for th
exponentz from simulations is quite difficult in one dimen
sion. ~In two dimensions the estimates forz are in excellent
agreement. It appears that the relaxation dynamics is ano
lous in one dimension, as suggested in Ref.@18#.!

Very recently, Mohanty and Dhar have shown that sa
pile models with ‘‘sticky’’ grains fall generically in the di-
rected percolation universality class@27#. In these models a
site harboring more than the threshold number of partic
~two, in the models studied here!, has a nonzero probability
to remainstable, rather than toppling. Models without thi
property are not expected to belong to the DP class. Th
studies of a reaction model suggest a common universa
class, distinct from that of DP, for absorbing-state phase tr
sitions in which the order parameter is coupled to a sec
field that relaxes diffusively in the presence of activity@19#.
Manna’s stochastic sandpile falls in this category, with t
local particle densityz(x,t) playing the role of the second
field. Our results show that height restrictions and pertur
tions of the toppling rule do not alter the critical exponen
if they preserve the above-mentioned features, suppor
universality in critical behavior far from equilibrium.
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FIG. 14. Stationary active-site density vsz2zc for various sys-
tem sizes~cooperative rule, 1D!.
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